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Wireless Healthcare Devices

Wearables:
* Continuous health monitoring.
* Remote patient monitoring.

* Personalized healthcare insights.

* Implants:
* Constant data collection from within the body.
e Chronic disease management.

* Timely interventions and emergency alerts.

* Advantages:
* Seamless connectivity for data transmission.
* Enhanced patient experience and compliance.

* Remote accessibility for healthcare providers.

*  Future Trends:
* Integration with loT and Al.
* |dentifying patterns and predicting health risks.
* Harnessing the power of 5G and beyond.

* Advancements in nanotechnology for innovative implants.
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loT and Wearables
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Application of Implantable Sensor-actuation Technology
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Realizing Battery-Free Intra-body, and Implant to On- \\
body Systems
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Merge Radio-Frequency, Wireless backscatter, and Conductive Impulse as a hybrid system
for battery-free communication and sensing
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Antenna forms in Tissues for RF range

Air
Muscle embedded antenna
* Dipole ;,
* Loop S

Gap to the muscle 0.5 mm (all scenarios)
Material: Lossy Al wire 0=3.56x107
Wire diameter: 0.2 mm

* Electrode with a capacitive gap

For any given size of implant and depth, an optimum frequency
governs maximum power efficiency.

A. Khaleghi and I. Balasingham, "Capacitively Coupled Electrode Antenna: A Practical Solution for Biomedical
Implants," 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021,
pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411050.
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Simulation Model
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Power Coupling Between Wearable and Implant Antenna in

Muscle Tissue

Skin
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Conductive Impulse Connectivity §
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A. Khaleghi, R. Noormohammadi and I. Balasingham, "Conductive Impulse for Wireless Communication in Dual-Chamber Leadless Pacemakers," in IEEE Transactions on Microwave Theory and Techniques, vol. 69,
no. 1, pp. 443-451, Jan. 2021, doi: 10.1109/TMTT.2020.3038782.



Modulated Backscatter with RF and Impulse Intra body K\
Connectivity
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Animal Experiment: Hybrid WPT, Backscatter
and Impulse Connectivity

Impulse transfer between two implants (intra body link) powered by RF RF Backscatter detected on the body

Depth: 8 cm



Battery-free Implants empowered by Wireless

Communications

High data rate sensors Low to moderate rate sensors

- Wireless video capsule endoscopy (WCE) - Multi-chamber cardiac pacemaker capsules

- Wireless Brain-machine Interface (BMI) - Biological chemical sensors
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Battery-less Communication Solutions for Medical Implants
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Conclusion

Patient SKY
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Dual Channels: Uses RF backscatter and galvanic
links for diverse communication.

Efficiency & Depth: Operates at 401 MHz,
effective up to 8.5 cm inside the body.

Compact Design: Utilizes small antennas
optimized for efficiency.

Battery-Free: Operates without an implant
battery, using near-zero power.

Backscatter
Protocol
Generator

Scalability: Supports multi-node implant
connectivity.



@D

IMBloC

Thanks for Your
Attention




	Slide 1: Design and Implementation of a Hybrid Wireless Power and Communication System for Medical Implants 
	Slide 2: Wireless Healthcare Devices
	Slide 3: Toward Human Digital Twin in Healthcare
	Slide 4
	Slide 5: Realizing Battery-Free Intra-body, and Implant to On-body Systems
	Slide 6: Antenna forms in Tissues for RF range
	Slide 7: Simulation Model
	Slide 8: Impedance of Implant and Wearable Antennas 
	Slide 9: Power Coupling Between Wearable and Implant Antenna in Muscle Tissue
	Slide 10: Wireless Powering Circuit with RF
	Slide 11: Conductive Impulse Connectivity
	Slide 12: Measurement and Modeling of Conductive Impulse
	Slide 13: Modulated Backscatter with RF and Impulse Intra body Connectivity
	Slide 14: Animal Experiment: Hybrid WPT, Backscatter and Impulse Connectivity
	Slide 15: Battery-free Implants empowered by Wireless Communications
	Slide 16: Conclusion
	Slide 17

