

IEEE MTT-S International Microwave Biomedical Conference, September 11th -13th, 2023, KULEUVEN

## 

Norwegian University of Science and Technology





The work has been supported by the project Brain-Connected inteRfAce TO machineS (B-CRATOS), (https://www.b-cratos.eu) under grant 965044, Horizon 2020 FET-OPEN.

Design and Implementation of a Hybrid Wireless Power and Communication System for Medical Implants

> Ali Khaleghi, Ali.khaleghi@ntnu.no



## Wireless Healthcare Devices



#### Wearables:

- Continuous health monitoring.
- Remote patient monitoring.
- Personalized healthcare insights.
- Implants:
  - Constant data collection from within the body.
  - Chronic disease management.
  - Timely interventions and emergency alerts.
- Advantages:
  - Seamless connectivity for data transmission.
  - Enhanced patient experience and compliance.
  - Remote accessibility for healthcare providers.
- Future Trends:
  - Integration with IoT and AI.
  - Identifying patterns and predicting health risks.
  - Harnessing the power of 5G and beyond.
  - · Advancements in nanotechnology for innovative implants.

## Toward Human Digital Twin in Healthcare

#### Human Interface Technologies

Focus on designing userfriendly interfaces for efficient human-machine interaction

#### Virtual Reality (VR)

VR applications enhance medical training and patient education, transforming the healthcare experience.

#### AI and Machine Learning

Al-driven algorithms assist in diagnostics and treatment planning.

#### IoT and Wearables

IoT devices, wearables, and implant sensors provide real-time health data, optimizing personalized care.



High bandwidth and low latency empower telemedicine for remote consultations and monitoring.

#### Advanced Healthcare Ecosystem

Integration of 5G, 6G enables seamless connectivity between humans and machines in healthcare. IMBioC

#### Application of Implantable Sensor-actuation Technology







#### Realizing Battery-Free Intra-body, and Implant to Onbody Systems



Merge <u>Radio-Frequency</u>, <u>Wireless backscatter</u>, and <u>Conductive Impulse</u> as a hybrid system for battery-free communication and sensing



## Antenna forms in Tissues for RF range

(I)

Gap to the muscle 0.5 mm (all scenarios)

Material: Lossy Al wire  $\sigma$ =3.56×10<sup>7</sup>

Wire diameter: 0.2 mm

Muscle

Air

Antenna

Dipole

#### Muscle embedded antenna

- Dipole
- Loop
- Electrode with a capacitive gap

For any given size of implant and depth, an optimum frequency governs maximum power efficiency.

|   | Antenna         | Ζ (Ω)        | eff. (dB),<br>403MHz | SAR (10g)<br>W/Kg | Q-<br>factor | 10 dB BW<br>(MHz) |
|---|-----------------|--------------|----------------------|-------------------|--------------|-------------------|
| 1 | Dipole (air)    | 0.057-j 8296 | -3.37                | -                 | -            | -                 |
|   | Dipole (Muscle) | 9.9- j7609   | -34.8                | 26.6              | 806          | 0.35 MHZ          |
|   | Loop (air)      | 0.34+j60     | -28                  | -                 | -            | -                 |
|   | Loop (Muscle)   | 0.85+j 60    | -28.6                | 7                 | 72           | 3.5 MHz           |
|   | CCEA            | 30+j0        | -34.5                | 47.5              | 1.3          | 100 MHz           |



A. Khaleghi and I. Balasingham, "Capacitively Coupled Electrode Antenna: A Practical Solution for Biomedical Implants," 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411050.



## Simulation Model







http://niremf.ifac.cnr.it/docs/DIELECTRIC/Report.html

Gabriel et al 1996, 4-Cole-Cole model



$$\varepsilon_{\rm r}(\omega) = \varepsilon_{\infty} + \sum_{n=1}^{4} \frac{\Delta \varepsilon_n}{1 + (i\omega\tau_n)^{1-\alpha_n}} + \frac{\sigma_{\rm i}}{i\omega\varepsilon_0}$$



**Tissue properties modeling** 



## Impedance of Implant and Wearable Antennas





### Impedance of on-body patch in contact with muscle tissue versus frequency for different patch sizes

Calculated implant antenna impedance in muscle tissue for different implant lengths, L=5, 10, 20, 30, 40 mm

# Power Coupling Between Wearable and Implant Antenna in Muscle Tissue



Coupling factor at depth 100 mm versus capsule size and onbody size Coupling factor between on-body (Length=100 mm) and implant (capsule size 20 mm) depth and frequency



## Wireless Powering Circuit with RF



RF energy harvesting And backscatter load modulation Conductive impulse



Main hub capsule Secondary galvanic implant



Implant electronics

## Conductive Impulse Connectivity





Conductive link modeling in homogenous muscle model







### Measurement and Modeling of Conductive Impulse



A. Khaleghi, R. Noormohammadi and I. Balasingham, "Conductive Impulse for Wireless Communication in Dual-Chamber Leadless Pacemakers," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 443-451, Jan. 2021, doi: 10.1109/TMTT.2020.3038782.



Data source

#### Modulated Backscatter with RF and Impulse Intra body Connectivity



# Animal Experiment: Hybrid WPT, Backscatter and Impulse Connectivity



Impulse transfer between two implants (intra body link) powered by RF

RF Backscatter detected on the body Depth: 8 cm

# Battery-free Implants empowered by Wireless Communications

Heart



#### High data rate sensors

- Wireless video capsule endoscopy (WCE)
- Wireless Brain-machine Interface (BMI)



#### Low to moderate rate sensors

- Multi-chamber cardiac pacemaker capsules
- Biological chemical sensors





Battery-less Communication Solutions for Medical Implants



### Conclusion

**Dual Channels:** Uses RF backscatter and galvanic links for diverse communication.

**Efficiency & Depth:** Operates at 401 MHz, effective up to 8.5 cm inside the body.

**Compact Design:** Utilizes small antennas optimized for efficiency.

**Battery-Free**: Operates without an implant battery, using near-zero power.

**Scalability:** Supports multi-node implant connectivity.







## Thanks for Your Attention