

PASSION FOR INNOVATION

Deep Learning for real-time neural decoding of grasp

Paolo Viviani, Ilaria Gesmundo, Elios Ghinato, Andres Agudelo-Toro, Chiara Vercellino Giacomo Vitali, Letizia Bergamasco, Alberto Scionti, Marco Ghislieri, Valentina Agostini, Olivier Terzo, Hansjörg Scherberger

paolo.viviani@linksfoundation.com ECML PKDD 2023 – ADS TRACK, TORINO 2023

Background – B-Cratos project

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Applied Data Science: focus on application → context of research in a larger project

The goal is to develop a closed-loop BCI and to validate it with NHPs (Non-Human Primates), with the following technical objectives:

- 1. Proof-of-concept, high-speed, wireless brain implant capable of two-way communication without battery
- 2. General-purpose, high-speed intra-body communications technology (Fat-IBC)
- 3. HPC based ML models deployed on embedded board for low-power inference and control
- 4. Improvements of biomechatronic hand prothesis
- 5. High-resolution sensorized skin

TORINO

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

March 2021 – February 2025 FET-OPEN 4.7M EU funding

Partners from 5 countries Coordinated by University of Uppsala

Neural Decoding for Neuroprosthetics

- Goal: translate the signal from brain implants
 into commands for a prothesis
- Main steps
 - Brain electrodes pick up analogue signals from large neuron populations
 - Post-processing is applied to convert the signal to "spike-trains": multi-channel time series of binary data
 - Decoding algorithm is applied to convert the signal to command for the prothesis

From C. Pandarinath and S. J. Bensmaia, "The science and engineering behind sensitized brain-controlled bionic hands," Physiological Reviews, p. physrev.00034.2020, Sep. 2021 doi: 10.1152/physrev.00034.2020. <u>Edited.</u>

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

- Off-line decoding is well understood, real-time decoding is challenging
- State-of-the-art models are simple (e.g., linear models): Patient "learns to drive" the model
 - Also reflects neuroscientist's need for explainability
- Neural signal changes over time and requires daily re-training of models
- B-Cratos aims to improve the overall accuracy of models and to re-use information across sessions
 - · Lower effort for patient, easier adoption, more natural usage
 - Modern machine learning techniques can support this goal

ML task overview

• Working on a reference dataset

- Focused on a reference dataset provided by a partner (German Primate Center)
- Monkey trained for a grasping task
- Neural recording from multiple cortex regions
- Monkey grasping objects presented in sequence
- Objects grouped by shape and size, presented randomly
- 2 monkeys, 6 recording sessions (i.e., different days)
- Learning Tasks
 - Grasping phase detection
 - Object classification

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

TORINO

Dataset structure

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

•••• Recording sessions, trials, metadata

Recording sessions

NHP identifier	Dataset identifier	$\mid \# \text{ Channels}$	$\mid \# \text{ Trials}$
М	MRec40 MRec41 MRec42	$552 \\ 568 \\ 554$	745 757 653
Z	ZRec32 ZRec35 ZRec50	391 388 369	$ \begin{array}{c} 687 \\ 724 \\ 610 \end{array} $

- Each trial discretised in bins of 40ms
- Results in dense matrix
 - channels x time_bins
 - Each bin contains the number of spikes
- Time stamps associated to a bin
- Each matrix is Associated to object id

FCML PKDD 202

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- 1. Classes are de-duplicated (i.e., same object in different groups)
- 2. Dataset is split by trial
 - 1. 80% training + validation, 20% test)
 - 2. stratified by class
- 3. Split is stratified by class
- 4. Under-represented class are removed (i.e., less than 3 trials per session)
- 5. Total of 39 classes left

0	0	0	0	Sequence extraction
0	0	0	0	•
0	0	0	0	rie-piùcessing
0	0	0	0	Dro-processing
0	0	0	0	
0	0	0	0	
0	0	0	0	

ECML PKDD 2023

Goal: simulate real-time decoding

- Sliding windows extract sub-sequnces of 12 bins
- Grasp phase classification includes all data labelled with 0 (no grasp) and 1 (grasp)
- Object classification includes only the sub-sequences in the grasp phase, labelled with object ID

*** * * ***

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- LSTMs demonstrated good performance in literature
- Started from there (quite naïve in fact)
- **Bidirectionality** proved to be very effective
- Lots of dropout to prevent heavy overfitting
- Hyperparameter optimization

Hyperparameter	Values	Sel	lected		
	(L1=0.01, L2=0.01)	M	Z		
LSTM layers	$ $ { 1, 2, 3, 4 }	2	1		
Hidden units	$\{ 16, 32, 40, 64 \}$	40	40		
Dropout	$\{0, 0.2, 0.4, 0.6, 0.7, 0.8\}$	0.8	0.7		
Kernel regularisation	$\{ \text{ None, L1, L2, L1 + L2} \}$	L2	L2		
Recurrent regularization	$\{ \text{ None, L1, L2, L1 + L2} \}$	L2	L1+L2		
Initial learning rate	$\left \ \left\{ \ 10^{-3}, \ 2 \cdot 10^{-4}, \ 10^{-4} \ ight\} ight.$	$ 10^{-3}$	$ 10^{-3}$		

ECML PKDD 2023

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

- Significant class imbalance here, with no grasp class
 ~10 times more represented than grasp class
- LSTM model reaches an accuracy of at least 98% for all datasets, the F1 score is always greater than 0.95
- Result relevant for a finite-state prosthesis control scenario
 - Each 40ms time step: predict prosthesis status (grasp vs. no-grasp)
 - 1% of unwanted movement for each time step
 - 0.1% of unresponsive prosthesis

(b) Grasping phase detection accuracy metrics.

Dataset id	Accuracy	F1 score
MRec40	99%	0.96
MRec41	99%	0.96
MRec42	99%	0.97
ZRec32	99%	0.96
ZRec35	98%	0.96
ZRec50	98%	0.95

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Top 1% accuracy ranging from 61% to 74% across different sessions
- Neighbouring classes referred to similar objects
 - Relaxed accuracy defined as misclassification by 1 class (i.e., distance 1 from diagonal)

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

• • Object classification – comparison with state of the art

Results

Animal	Metric	Present work	Schaffelhofer, 2015	Fabiani, 2021
M	Accuracy	$69.7\pm4\%$	$62.9\pm3.6\%$	n/a
	Accuracy	$62.3\pm1.2\%$	$61.4\pm4.1\%$	n/a
Global	Accuracy Relaxed accuracy	$65.9 \pm 4.9\%$ $94.4 \pm 3.1\%$	$62\% \\ 86.5\%$	$22\% \\ 59\%$

- Schaffelhofer et al. report an average accuracy for the hold phase of 62% over a total of 10 recording sessions (against the six available for this work)
 - Offline naive bayesian classifier applied to the whole hold phase vs. sligding window
 - Validated with a leave-one-out (LOO) approach
 - Dataset fraction used for training was significantly higher
 - Significantly better (M) and slightly better (Z)

accuracy results in a harder set-up. Significantly better relaxed accuracy

- Fabiani reported offline and online accuracy figures
 - This work outperforms both cases, despite the use of similar LSTM architechtures
 - Improvement likely due to bidirectional networks and stronger regularization

TORINO

- Real life scenario involves frequent retraining, also during recording sessions
- Neuroscientist's requirement is to limit training to a minimum, and let the model work for most of the time
 - Even more relevant for patients
- Smaller training sets were evaluated
- The model is still outperforming the previous SotA down to 40% of training data

$Training + validation \ set$	Accuracy	Relaxed accuracy
80%	74.1%	98.3%
70%	70.1%	97.1%
60%	69%	93.7%
50%	62.8%	94%
40%	63.8%	92.8%
$30\%^*$	59.2%	87.5%
$20\%^{**}$	51%	81%

 * validation is 30% of training set to ensure at least one representative per class

 ** validation is 40% of training set

Remarks and future work

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- LSTM can match and outperform previous approaches on a known dataset
 - More accurate prosthesis control can be enabled by modern architectures, at the expense of some explainability
- Results for relaxed accuracy are very promising for the final application
 - Continuous control of few degrees of freedom (regression on few variables)
 - Finite-state control of 5-6 grasp types (classification on fewer classes)

Future work

- Neural data evolves with time: robustness/adaptability of models is key to reduce patients and physicians effort
- Fine-tuning with limited data already proven effective
- Semi-supervised training with usage data is an open problem, inputs from the community are welcome!

Thanks for your attention!

Acknowledgments

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

