Fat-layer intra-body communication

92 Mb/s intra-body communication with low-cost WLAN hardware

Ted Johansson, Pramod Rangaiah, Johan Engstrand, Mauricio Perez, Robin Augustine

Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Sweden

Presentation Swedish Microwave Days 2023

B-CRATOS: "Wireless Brain-Connect inteRfAce TO machineS"

- Wireless, high data rate, full-duplex Brain-Prosthetic connectivity
- B-CRATOS overcoming challenges such as power consumption, batteries, sensing and data transmission through breakthroughs in high bandwidth, battery-free, bidirectional wireless communication technology and electronic skin
- Funded by EU H2020 FET-OPEN
- Project period: 2021-2024
- Partner groups: UU, NTNU, SSSA, SINANO, DPZ, BRME, LINKS

Two-way intra-body communication between brain and prosthetics: >32 Mb/s needed!

Background

Contact person: Robin Augustine

BOS: Software Principles & Techniques for a Body-Centric OS

- Operating system for body computing using information from sensors and actuators in, on and outside human bodies.
- Deep brain stimulation as the demonstrator for treating movement disorders associated with Parkinson's disease.
- UU (FTE + IT), KTH, RISE
- 5-year project 2022-2027
- Funded by SSF

Background

UPPSALA UNIVERSITET

High-speed intra-body communication also needed

1. Introduction: BAN and IBC communication speeds

- Body-area networks (BAN), body-sensor networks (BSN): portable devices for health care, sports, and entertainment.
- WBAN: IEEE 802.15 standards for Internet of Things (IoT) protocols.
- Communication speeds in the order of a few Mb/s.
- Intra-body communication (IBC)
 - ultrasound, galvanic coupling, capacitive coupling, resonant coupling.
 - ultrasound: tens of Mb/s.
 - galvanic, capacitive: can reach up to **150 Mb/s** (short distance, custom circuits), requires grounded return path (outside the body).
- Fat-IBC
 - human skin/fat/muscle layers act as a waveguide for microwave transmissions,
 - high-speed data communication not yet demonstrated.

Fat-IBC (Asan, Healthcare Technology Letters, 2017)

- Human skin/fat/muscle layerd act as a waveguide for microwave transmissions
 - Lower losses for microwave propagation compared to other tissue (at least up to 8 GHz without significant increase in insertion loss)
 - Low loss as signal is confined with the skin and the muscle tissue
 - Data integrity
 - Higher bandwidth
- kb/s data communication demonstrated, Zigbee-like (Asan, IEEE JERM 2017)

The concept of channel propagation through the fat tissue.

Fat-IBC for high-speed data communication

- Target: 64 + 2 Mb/s (B-CRATOS)
- Existing established communication standards
 - WPAN (802.15.x): https://en.wikipedia.org/wiki/IEEE_802.15
 - WPAN/Bluetooth (802.15.1): 1-2 Mb/s
 - High Rate WPAN (802.15.3a): UWB, 480 Mb/s @ 2 m (3.1 10.6 GHz): partly obsolete
 - 802.15.4 (e.g. Zigbee): only kb/s
 - ...
 - 4G or low/mid-band 5G (< 6 GHz)
 - WLAN (802.11): 2.4 and 5.8 GHz, many different versions
- Develop something own? Both PHY, MAC, protocol, etc. have to be included.

WLAN 802.11 for Fat-IBC?

- Target: 64 + 2 Mb/s (B-CRATOS)
- To reach > 32 Mb/s, preferably 64 Mb/s, we need to go to 802.11n:
 - Up to 150 Mb/s
 - Single antenna:
 - 65 72.2 Mb/s using BW = 20 MHz
 - 2x capacity if using BW = 40 MHz
 - 2.4 GHz, 5 GHz
 - 4x MIMO: 600 Mb/s
 - 16-QAM or 64-QAM

Generation	IEEE Standard	Maximum Linkrate (Mbit/s)	Adopted	Radio Frequency (GHz) ^[1]
Wi-Fi 7	802.11be	40000	TBA	2.4/5/6
Wi-Fi 6E	900 11 ov	600 to 9608	2020	2.4/5/6
Wi-Fi 6	002.11ax		2019	2.4/5
Wi-Fi 5	802.11ac	433 to 6933	2014	Į
Wi-Fi 4	802.11n	72 to 600	2008	2.4/
(Wi-Fi 3*)	802.11g	6 to 54	2003	2.4
(Wi-Fi 2*)	802.11a	6 to 54	1999	
(Wi-Fi 1*)	802.11b	1 to 11	1999	2.4
(Wi-Fi 0*)	802.11	1 to 2	1997	2.4

[wikipedia]

			Data rate (Mb/s)	
MCS index	Modulation	Coding	HT20	HT40
0	BPSK	1/2	6.5	13.5
1	QPSK	1/2	13.0	27.0
2	QPSK	3/4	19.5	40.5
3	16-QAM	1/2	26.0	54.0
4	16-QAM	3/4	39.0	81.0
5	64-QAM	2/3	52.0	108.0
6	64-QAM	3/4	58.5	121.5
7	64-QAM	5/6	65.0	135.0

HT MCS DATA RATES IN IEEE 802.11N FOR A SINGLE SPATIAL

2. Experimental: Materials and Methods

 Research question: explore Fat-IBC as a communication link with both in-body and on-body antennas and skin/fat/muscle phantoms using IEEE 802.11n wireless communication with low-cost off-the-shelf hardware in the 2.4 GHz band. Can 64 Mb/s be reached?

- two antenna types: in-body (implanted), on-body (on the skin)
- phantoms to emulate human body skin/fat/muscle
- build, simulate, and verify a shielded box for the measurements
- measure important radio parameters (small-signal, modulated)
- use commercial low-cost WLAN hardware for the radio link
- use the 2.4 GHz band (antennas already available)

- 2. Materials and Methods
- Research question: explore Fat-IBC as a communication link with both in-body and on-body antennas and skin/fat/muscle phantoms using IEEE 802.11n wireless communication with low-cost off-the-shelf hardware in the 2.4 GHz band. Can 64 Mb/s be reached? May we name it "Fat-Fi"?
- two antenna types: in-body (implanted), on-body (on the skin)
- phantoms to emulate human body skin/fat/muscle
- build, simulate, and verify a shielded box for the measurements
- measure important radio parameters (small-signal, modulated)
- use commercial low-cost WLAN hardware for the radio link
- use the 2.4 GHz band (antennas already available)

Antenna and phantoms combinations

- Two antennas:
 - "In-body" (implanted): topology-optimized planar antennas (TOPAs).
 - "On-body" (on the skin): ring-shaped novel design (to be published).
- Three layer phantoms, emulating skin, fat, and muscle.
 - Previously developed: 500 MHz 20 GHz, emulates properties of human tissue.
 - Electrical properties verified by Keysight 85070E slim probe measurements and reference data from the IFAC database.
- Three combinations of antenna connection to the phantoms were studied, for phantom lengths of 10, 20, and 30 cm:
 - Case 1: In-body to In-body antennas
 - Case 2: In-body to On-body antennas
 - Case 3: On-body to On-body antennas

Antenna connections to the phantoms:
(a) Case 1: In-body to In-body antennas,
(b) Case 2: In-body to On-body antennas,
(c) Case 3: On-body to On-body antennas.

Shielded box

Th shielded box, with two TOPAs (topology-optimized planar antennas), and a phantom.

Longitudinal-cutplane views of the simulated 3D electric field distribution at 2.45 GHz for Case 1 with a 30 cm phantom: (a) with the shielded chamber, and (b) without.

The shielded chamber with one chamber segment removed, exposing the three-layer phantom and TOPAs inside. In front are the two Raspberry Pis inside aluminum-clad cases.

Radio measurements

- s-parameters: Keysight N9918A Fieldfox microwave analyzer
- SNR (E_b/N_0): R&S SMCV100B VSG + FSVA3000 VSA. Pout = 10 dBm, modulation: BPSK .. 512-QAM.
- WLAN:
 - 2x Raspberry Pi Compute Module 4 (2 GB RAM, 8 GB flash, WLAN 802.11n + BT), Pout = 10 dBm to external antennas.
 - 2x DFRobot IoT Carrier Board Mini
 - RP OS Lite v.10
- Target the 2.4 GHz band

3. Results

s-parameters

- good coupling with in-body antennas to fat channel
- less good coupling with on-body antennas to fat channel
- 1 dB/cm loss in the fat channel @ 2.45 GHz

Modulated signals (2.45 GHz)

- All modulations work with in-body antennas
- For on-body antennas, BER degradation is observed for the longer phantoms

(WLAN will still connect using 64-QAM, next slide)

• Test signal: 1 Msamples/s, no error correction, etc.

on-body antenna, 30 cm phantom

WLAN (802.11n, 2.4 GHz band)

- same results for all antenna combinations and phantoms.
- sweeping the MCS:
 - BW = 20 MHz: 58-60 Mb/s
 - BW = 40 MHz: 92 Mb/s using MCS 5–7 (64-QAM)
- "just connect":
 - 92 Mb/s using MCS 7 (64-QAM), 40 MHz bandwidth
- The speed limited by communication between the compute module circuits, not the link in the fat layer
- latency = 1-2 ms (comparable to LAN).

T MCS data rates in IEEE 802.11n for a single si Stream with a guard interval of 800 ns				
			Data rate (Mb/s)	
MCS index	Modulation	Coding	HT20	HT40
0	BPSK	1/2	6.5	13.5
1	QPSK	1/2	13.0	27.0
2	QPSK	3/4	19.5	40.5
3	16-QAM	1/2	26.0	54.0
4	16-QAM	3/4	39.0	81.0
5	64-QAM	2/3	52.0	108.0
6	64-QAM	3/4	58.5	121.5
7	64-QAM	5/6	65.0	135.0

4. Summary, conclusions

- s-parameters
 - in-body antennas: excellent coupling to the fat channel,
 - on-body antennas: improvements needed to couple the signal to the fat channel,
 - 1 dB/cm loss in the fat channel,
 - with in-body antennas, transmission at >= 60 cm should be possible, and longer at reduced modulations (speed).
- SNR for different modulations
 - link is very linear and can handle modulations as complex as 512-QAM without any degradation of the BER.
 - degradation observed for long phantoms (signal loss), but better results with full WLAN
- WLAN
 - 92 MB/s with 802.11n, 40 MHz BW, in the 2.4 GHz band obtained,
 - limited by the hardware (135 Mb/s should be possible with one-antenna 802.11n).

COMPARISON WITH OTHER SIMILAR IN-BODY COMMUNICATION					
Ref	Ho [31]	Jeon [32]	Lee [10]	This work	
Year	2014	2019	2020	2023	
Method	CC-BCC	GC-BCC	CC-BCC	Fat-IBC	
Speed	60 Mb/s @100 cm	100 Mb/s @10 cm (est)	150 Mb/s @ 20 cm	92 Mb/s@ 30 cm	
-			10 Mb/s @100 cm		
Hardware	65 nm CMOS	180 nm CMOS	65 nm CMOS	"off-the-shelf"	
Comm	3-level Walsh	Bipolar RZ	DFE	802.11n	
Freq band [MHz]	Baseband	Baseband	Baseband	2400-2450	
Bandwidth [MHz]	up to 80	100	150	40	

Obtained data rate is among the highest reported for intra-body communication.

Future work (short-term)

- Similar experiments at 5.8 GHz and larger bandwidths (IEEE 802.11ac),
- increased transmitted/coupled power (SAR-limited),
- optimized on-body antennas,
- other phantoms with different geometries

to explore the limits of Fat-IBC communication.

