

Ultra-low Power Wireless Communication for Medical Implants

Ali Khaleghi Ali.Khaleghi@ntnu.no

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 965044

- Why use wireless communication for medical implants?
- Efficient communication system integration with implant
- Feasibility and use cases:
 - Battery-free Capsule Endoscope
 - Multichamber leadless cardiac pacemaker
- BCRATOS: Brain Machine Interface

Internet of Implant Medical Devices(IOIMD) for Future Medicine

Aim: Early detection early treatment

- Sensors for detection and recording
- Information exchange
 - Intra-body
 - On-body
 - Body area
- Data fusion to networks (WPAN, WLAN and Intranet, Internet)
- Access to the sensor's data from the network
 - Two way communication
 - Addressing
 - Localization
- Implementation of ML, AI models, Cloud computing for detection and treatment plans
- Actuation, treatment delivery systems

Communication Technologies for Implants

inded by the European Unio

Comparison Table

Implant Communication Technology	Transmitter Electronics	Power Consumption (mW)	Path loss (dB/cm)	Antenna Efficiency (%)	Antenna Miniaturization (mm)	Data rate	Integration within node	Communication distance (cm)	Research Status
Radio Frequency (MICS bands)	Yes	High (25-35)	High (5-6)	Very Low (2-5)	Limited (efficiency loss)	< 2 Mbps	Difficult	< 20	Established Technology
Electric signal (HBC)	Yes	Moderate (10-20)	Low (2-3)	Moderate (10-20)	> 10 mm (Matching loss)	< 100 kbps	Easy	< 10	Research Area
Backscatter (HBBC)	No	Very Low (10-30 nW)	Moderate (4-6)	High (60-70)	> 5 mm	< 30 Mbps	Easy	<20	Near Future Technology
Molecular	No	Ultra Low	High	No Antenna	Ultra small (nm?)	< 10 bps	Very Easy	<0.1	Future Technology

- Energy resource and device lifetime
 - Battery, local harvesting, wireless charging
- Size (use case → micro to Cms)
- Bio-compatibility (usually metal casing)
- Electronics integration and EMC
- Safety, Trust, Identity
- Security, authenticity, reliability

Implants Powered by Wireless Communications

High data rate sensors Wireless capsule endoscopy (WCE) Brain machine interface (BMI) Low to moderate rate sensors Multichamber Cardiac pacemaker Leadless Leadless Leadless I A pacemakers subcutaneous capsules With HBC/RF huh with HBC/RE Backscatter switch Biological chemical sensors Leadless RA pacemaker(s) HBC or Leadless LV Leadless RV pacemaker(s) nacemake C2 C3

Norwegian University of Science and Technology 7

Pilot for Battery less Wireless Capsule Endoscopy

- Network connection
- Streaming to 5G system
- Video processing in the edge
- Feedback loop to WCE

Pilot for multi-chamber Leadless Cardiac Pacemaker module

S1: Backscatter communication for pacemaker

- Low data rate RF backscatter
- Subcarrier applied in the pacemaker
- Use of subcutanous reader for WPT and low rate (100 kbps) communication.

S2: Conductive Impulse communication

- Implant to Implant
- Implant to subcutaneous can
- Ultra-low power (pico-watt/ bit)
- Battery powered or can be charged with RF signal

- Wireless charging of the Brain implant
- Wireless data telemetry and tele-command
- High data rate implant data readout

Wireless Powering Unit

- Wireless charging and safety
- Supply power for readout and stimulation system provided by BRME
- Supply power to the sensory system and MCU

Wireless Communication Unit

- Support Telemetry and Telecommand
 - Provide data security
- Support communication payload:
 - Data rate 32-64 Mbps
 - Data security
 - Radiation safety
 - Reliability for 24/7 (min 6 month)

- Ultra low power implant communication payload is essential for IOI medical devices
- Battery free communication removes the system complexity of tiny IMD
- Wireless network capacity can be deployed to empower the tiny implants
- Online detection and treatment becomes feasible
- Better Healthcare and sustainable health systems can be deployed with IOIMD

B-CRATOS has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 965044

Institute for Electronic Systems (IES) at NTNU leads B-CRATOS WP2: Communication system and wireless powering of BMI

https://www.b-cratos.eu/

